
Using change-point detection to support artificial neural networks for
interest rates forecasting

Kyong Jo Oh*, Ingoo Han

Graduate School of Management, Korea Advanced Institute of Science and Technology, 207-43 Cheongryangri-Dong, Dongdaemun-Gu,
Seoul 130-012, South Korea

Abstract

Interest rates are one of the most closely watched variables in the economy. They have been studied by a number of researchers as they
strongly affect other economic and financial parameters. Contrary to other chaotic financial data, the movement of interest rates has a series of
change points owing to the monetary policy of the US government. The basic concept of this proposed model is to obtain intervals divided by
change points, to identify them as change-point groups, and to use them in interest rates forecasting. The proposed model consists of three
stages. The first stage is to detect successive change points in the interest rates dataset. The second stage is to forecast the change-point group
with the backpropagation neural network (BPN). The final stage is to forecast the output with BPN. This study then examines the predict-
ability of the integrated neural network model for interest rates forecasting using change-point detection.q 2000 Elsevier Science Ltd. All
rights reserved.
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1. Introduction

Interest rates are one of the most closely watched vari-
ables in the economy. Their movements are reported almost
daily by the news media as they directly affect our everyday
lives and have important consequences for the economy.
There exist extensive studies in this area using statistical
approaches, such as term structure models, vector autore-
gressive (VAR) models, autoregressive conditionally
heteroskedastic (ARCH)—generalized autoregressive
conditionally heteroskedastic (GARCH) models and other
time series analysis approaches.

Currently, several studies have demonstrated that artifi-
cial intelligence (AI) approaches, such as fuzzy theory (Ju,
Kim & Shim, 1997) and neural networks (Deboeck &
Cader, 1994), can be alternative methodologies for the chao-
tic interest rates data (Jaditz & Sayers, 1995; Larrain, 1991;
Peters, 1991). Previous work in interest rates forecasting
tend to use statistical techniques and AI techniques in isola-
tion. However, an integrated approach, which makes full
use of statistical approaches and AI techniques, offers the
promise of increasing performance over each method alone
(Chatfield, 1993). It has been proposed that the integrated
neural network models combining two or more models have

the potential to achieve a high predictive performance in
interest rates forecasting (Kim & Noh, 1997).

In general, interest rates data is controlled by govern-
ment’s monetary policy more than other financial data
(Bagliano & Favero, 1999; Christiano, Eichenbaum &
Evans, 1996; Gordon & Leeper, 1994; Leeper, 1997; Stron-
gin, 1995). Especially, banks play a very important role in
determining the supply of money. Much regulation of these
financial intermediaries is intended to improve their control.
One crucial regulation is reserve requirements, which make
it obligatory for all depository institutions to keep a certain
fraction of their deposits in accounts with the Federal
Reserve System, the central bank in US (Mishkin, 1995).
The government takes intentional action to control the
currency flow that has direct influence upon interest rates.
Therefore, we can conjecture that the movement of interest
rates has a series of change points, which occur because of
the monetary policy of the government.

Based on these inherent characteristics in interest rates,
this study suggests the change-point detection for interest
rates forecasting. The proposed model consists of three
stages. The first stage is to detect successive change points
in the interest rates dataset. The second stage is to forecast
the change-point group with BPN. The final stage is to
forecast the output with BPN. This study then examines
the predictability of the integrated neural network models
for interest rates forecasting using change-point detection.
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Through the discovery of different patterns in the US
Treasury securities, the focus then shifts to the change-
point detection-assisted modeling of Treasury bill rates
with 1 years’ maturity and Treasury bond rates with 30
years’ maturity. Input variable selection is based on the
causal model of interest rates presented by the econometri-
cians. To explore the predictability, we divided the interest
data into the training data over one period and the testing
data over the next period. The predictability of interest rates
is examined using the metrics of the root mean squared error
(RMSE), the mean absolute error (MAE) and the mean
absolute percentage error (MAPE).

In Section 2, we outline the development of change-point
detection and its application to the financial economics.
Section 3 describes the proposed integrated neural network
model details. Sections 4 and 5 report the processes and the
results of the case study. Finally, the concluding remarks are
presented in Section 6.

2. Change-point detection

2.1. Application of change-point detection in the financial
economics

Financial analysts and econometricians have frequently
used piecewise-linear models that also include change-point
models. They are known as models with structural break in
the economic literature. In these models, the parameters are
assumed to shift—typically once—during a given sample
period and the goal is to estimate the two sets of parameters
as well as the change point or structural break.

This technique has been applied to macroeconomic time
series. The first study in this field is conducted by Perron
(1989, 1990) and Rapport and Reichlin (1989). From then
on, several statistics have been developed that work well in
a change-point framework, all of which are considered in
the context of breaking the trend variables (Banerjee, Lums-
daine & Stock, 1992; Christiano, 1992; Perron, 1995;
Vogelsang & Perron, 1995; Zivot & Andrews, 1992). In
those cases where only a shift in the mean is present, the
statistics proposed in the papers by Perron (1990) or Perron
and Vogelsang (1992) stand out. However, some variables
do not show just one change point. Rather, it is common for
them to exhibit the presence of multiple change points.
Thus, it may be necessary to introduce multiple change
points in the specifications of the models. For example,
Lumsdaine and Papell (1997) considered the presence of
two or more change points in the trend variables. In this
study, it is assumed that the Treasury security rates can
have two or more change points as well as just one change
point.

There are a few artificial intelligence models to consider
the change-point detection problems. Most of the previous
research has a focus on the finding of unknown change
points for the past, not the forecast for the future (Li &

Yu, 1999; Wolkenhauer & Edmunds, 1997). Our model
obtains intervals divided by change points in the training
phase, identifies them as change-point groups in the training
phase, and forecasts to which group each sample is assigned
in the testing phase. It will be tested whether the introduc-
tion of change points to our model may improve the predict-
ability of interest rates.

In this study, a series of change points will be detected by
the Pettitt test, a nonparametric change-point detection
method, as nonparametric statistical property is a suitable
match for a neural network model that is a kind of nonpara-
metric method (White, 1992). In addition, the Pettitt test is a
kind of Mann–Whitney type statistic, which has a remark-
ably stable distribution and provides a robust test of the
change point resistant to outliers (Pettitt, 1980b). In this
point, the introduction of the Pettitt test is fairly appropriate
to the analysis of chaotic interest rates data.

2.2. The Pettitt tests

The Pettitt tests assume that the observations form an
ordered sequence and that initially the distribution of
responses has one median and at some point there is a
shift in the median of the distribution.H0 is the null hypoth-
esis that there is no change in the location parameter (i.e. the
median) of the sequence of observations, andH1 is the alter-
native hypothesis that there is a change in the location para-
meter of the sequence.

There are two kinds of change-point detection tests. One
is appropriate when the data is binary and consists of obser-
vations with some binomial process (Pettitt, 1980a).
Another test assumes that the data are continuous (Pettitt,
1979). The logic of the tests is similar although the compu-
tational formulas are different. We use the continuous type
as we forecast the real value of interest rates. The Pettitt test
is explained as follows.

First, each of the observationsX1;X2;…;XN must be
ranked from 1 toN. Let ri be the rank associated with the
observationXi. Then at each placej in the series, we
calculate

Wj �
Xj

i�1

ri ; j � 1;2;…;N 2 1 �1�

which is the sum of the ranks of the variables at or before the
point j. Next for each point in the sequence, calculate
2Wj 2 j�N 1 1�. Then set

Km;n � maxu2Wj 2 j�N 1 1�u j � 1;2;…;N 2 1 �2�
The value ofj where the maximum in Eq. (2) occurs is the
estimated change point in the sequence and is denotedm.
N 2 m� n is the number of observations after the change
point. Thus,Km,n is the statistic which divides the sequence
into m and n observations occurring before and after the
change, respectively.

Whether this value ofKm,n is larger than we would expect
underH0 can be tested by referring to a table of the sampling
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distribution ofWj, the sum of ranks. IfW exceeds the tabled
value of W at the appropriate significance level, we may
rejectH0 that there is no change in distribution.

If N becomes large,W is approximately normally distrib-
uted with meanm�N 1 1�=2 and variancemn�N 1 1�=12
underH0. Thus, when the series is long, the test for change
may be carried out and tested using the standard normal
distribution table by transformingW into Z:

Z � W 1 h 2 m�N 1 1�=2������������������
mn�N 1 1�=12
p �3�

whereh� 20:5 if W . m�N 1 1�=2 andh� 10:5 if W ,
m�N 1 1�=2:

The Pettitt test detects a possible change point in the time
sequence dataset. Once the change point is detected through
the test, then the dataset is divided into two intervals. The
intervals before and after the change point form homoge-
neous groups that take heterogeneous characteristics from
each other. This process becomes a fundamental part of the
binary segmentation method explained in Section 3.

3. Model specification

Statistical techniques and neural network learning meth-
ods have been integrated to forecast the treasury security
rates. The advantages of combining multiple techniques to
yield synergism for discovery and prediction have been
widely recognized (Gottman, 1981; Kaufman, Michalski
& Kerschberg, 1991). BPN is applied to our model as
BPN has been used successfully in many applications
such as classification, forecasting and pattern recognition
(Patterson, 1996).

In this section, we discuss the architecture and the char-

acteristics of our model to integrate the change-point detec-
tion and the BPN. Fig. 1 shows the architecture of our
model. Based on the Pettitt test, the proposed model consists
of three stages: (1) the change-point detection (CPD) stage;
(2) the change-point-assisted group detection (CPGD)
stage; and (3) the output forecasting neural network
(OFNN) stage. The BPN is used as a classification tool in
CPGD and as a forecasting tool in OFNN.

3.1. The CPD stage: construction and analysis on
homogeneous groups

The Pettitt test is a method to find a change-point in the
time series data (Pettitt, 1979). It is known that interest rates
at timet are more important than the fundamental economic
variables in determining interest rates at timet 1 1 (Larrain,
1991). Thus, we apply the Pettitt test to interest rates at time
t in the training phase. The interval made by the test is
defined as the significant interval, labeled SI, which is iden-
tified with a homogeneous group. Multiple change points
are obtained under the binary segmentation method (Vostri-
kova, 1981) which is explained as follows:

Step 1. Find a change point in 1, N intervals by the
Pettitt test. Ifr1 is a change point, 1, r1 intervals are
regarded as SI1 and �r1 1 1� , N intervals are regarded
as SI2. Otherwise, it is concluded that there does not exist
a change point for 1, N intervals�1 # r1 # N�:
Step 2. Find a change point in 1, r1 intervals by the Pettitt
test. Ifr2 is a change point, 1, r2 intervals are regarded as
SI11 and�r2 1 1� , r1 intervals are regarded as SI12. Other-
wise, 1, r1 intervals are regarded as SI1 like Step 1
�1 # r2 # r1�:Find a change point in�r1 1 1� , N
intervals by the Pettitt test. Ifr3 is a change point,
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�r1 1 1� , r3 intervals are regarded as SI21 and �r3 1
1� , N intervals are regarded as SI22. Otherwise,�r1 1
1� , N intervals are regarded as SI2 like Step 1�r1 #
r3 # N�:
Step 3. By applying the same procedure of Steps 1 and 2
to subsamples, we can obtain several significant intervals
under the dichotomy.

We, first of all, have to decide the number of change
points. If just one change point is assumed to occur in a
given dataset, only the first step will be performed. Other-
wise, all of the three steps will be performed successively.
This process plays a role of clustering that constructs groups
as well as maintains the time sequence. In this point, the
CPD stage is distinguished from other clustering methods
such as thek-means nearest neighbor method and the hier-
archical clustering method which classify data samples by
the Euclidean distance between cases without considering
the time sequence. In addition, we analyze the characteris-
tics of groups according to descriptive statistics including
the mean and the variance, and also observe the density plot
of groups as the classification accuracy is highly sensitive to
the density of the samples (Wang, 1995).

3.2. The CPGD stage: forecast the group with BPN

The significant intervals in the CPD stage are grouped to
detect the regularities hidden in interest rates. Such groups
represent a set of meaningful trends encompassing interest
rates. As those trends help to find regularity among the

related output values more clearly, the neural network
model can have a better ability of generalization for the
unknown data. This is indeed a very useful point for sample
design. In general, the error for forecasting may be reduced
by making the subsampling units within groups homoge-
neous and the variation between groups heterogeneous
(Cochran, 1977). After the appropriate groups hidden in
interest rates are detected by the CPD stage, BPN is applied
to the input data samples at timet with group outputs fort 1
1 given by CPD. In this sense, CPGD is a model that is
trained to find an appropriate group for each given sample.

3.3. The OFNN stage: forecast the output with BPN

OFNN is built by applying the BPN model to each group.
OFNN is a mapping function between the input sample and
the corresponding desired output (i.e. Treasury security
rates). Once OFNN is built, then the sample can be used
to forecast the Treasury security rates.

4. Data and variables

In this study, input variables are selected based on Fish-
er’s theory that nominal interest rates (i.e. monthly US
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Fig. 2. The economic model under the Fisher-type interest rate equation.

Table 1
Description of input variables

Variable name Description

M2 Money stock
CPI Consumer price index
ERIR Expected real interest rates
IPI Industrial production index

Table 2
Descriptive statistics of the US Treasury monthly yields from January 1977 to May 1999 (T-bill, Treasury bill rates; T-note, Treasury note rates; T-bond,
Treasury bond rates)

Statistics Federal funds 1-year T-bill 3-year T-note 5-year T-note 10-year T-note 30-year T-bond

Mean 7.68 7.11 8.17 8.39 8.64 8.78
Minimum 2.92 3.06 4.17 4.18 4.53 5.01
Maximum 19.10 14.70 16.22 15.93 15.32 14.68
Range 16.18 11.64 12.05 11.75 10.79 9.67
Median 6.85 6.58 7.73 7.85 8.11 8.27
Lower quantile 5.40 5.23 6.07 6.40 6.80 7.27
Upper quantile 9.35 8.58 9.47 9.76 10.28 10.33
Quantile range 3.96 3.35 3.40 3.36 3.48 3.06
Variance 11.83 6.89 7.54 6.87 6.10 5.07
Standard deviation 3.44 2.63 2.75 2.62 2.47 2.25
Standard Error 0.21 0.16 0.17 0.16 0.15 0.14
Skewness 1.23 0.82 0.84 0.82 0.74 0.73
Kurtosis 1.55 0.17 0.09 20.03 20.21 20.25



K.J. Oh, I. Han / Expert Systems with Applications 19 (2000) 105–115 109

Table 3
Pearson correlation matrix of the US Treasury monthly yields from January 1977 to May 1999

Federal Funds 1-year T-bill 3-year T-note 5-year T-note 10-year T-note 30-year T-bond

Federal funds 1.0000
1-year T-bill 0.9735 1.0000
3-year T-note 0.9314 0.9798 1.0000
5-year T-note 0.9021 0.9578 0.9951 1.0000
10-year T-note 0.8674 0.9286 0.9810 0.9949 1.0000
30-year T-bond 0.8374 0.9015 0.9644 0.9849 0.9968 1.0000

Fig. 3. (a) US Treasury bills with a maturity of 1 year from January 1960 to May 1999. (b) US Treasury bonds with a maturity of 30 years from January 1977 to
May 1999.



Treasury security rates) consist of expected real interest
rates and anticipated inflation:

Nominal Interest Rates� Expected Real Interest Rates

1 Anticipated Inflation

Many econometricians have conducted the research upon
this Fisher-type interest rate equation (Darby, 1975; Feld-
stein, 1976; Makin, 1983; Mundell, 1963; Tanzi, 1980;
Tobin, 1965). They have explained the impact of anticipated
inflation on nominal interest rates. Moreover, they have
investigated the relationship of money surprise and real
GNP growth for the Fisher-type interest rate equation.
These relationships are summarized in Fig. 2. In Fig. 2,
the straight line is meant to have more causal effects than
the dotted line. The causal model like Fig. 2 presents an
explanation which would clarify the results (Kim & Park,
1996).

The input data sets in this study consist of the figures for
the monthly rate of change. Given the data sequence
d1;d2;…;dt; we form the rate of change at timet 1 1 by
dividing the first difference at that time by the datum at time
t:

dt11 2 dt

dt
�4�

The input variables included in this model are anticipated
inflation, expected real interest rates, money surprise and
real GNP growth which are shown in Fig. 2. The rate of
change of the consumer price index is used as a measure for
the anticipated inflation while the expected real interest
rates is calculated as the difference between the nominal
interest rates and the anticipated inflation at timet according

to the Fisher-type interest rate equation. M2 and industrial
production index are added to input variables as a measure
for money surprise and real GNP growth, respectively. The
list of input variables used in this study is summarized in
Table 1.

The data used in this study is monthly yields on the
US Treasury securities from January 1977 to May 1999.
As a starting point, we compute descriptive statistics
including basic statistics and Pearson correlations
among securities. Table 2 shows that the mean and
the median change in proportion to maturity. In Table
3, computation on the monthly yields shows that the
Pearson correlation between 1-year T-bills and 30-year
T-bonds is relatively small except the Federal Funds; The
correlation between 1-year T-bills and 3-year T-notes is
0.97; between 1-year T-bills and 5-year T-notes, 0.95;
between 1-year T-bills and 10-year T-notes, 0.92; and
between 1-year T-bills and 30-year T-bonds, 0.90. Thus,
the forecast of the US Treasury security rates had better
not be based on the equivalence alone, but should be
performed through individual modeling. In this sense, we
build two integrated neural network models for 1-year T-
bills and 30-year T-bonds, and establish the experiment
interval differently for each model. The motivation for
this plan is to see the impact of interval size on the perfor-
mance and further, to demonstrate the generality of the
proposed model.

For 1-year T-bills, the training phase involves observa-
tions from January 1961 to August 1991 and the testing
phase runs from September 1991 to May 1999. For 30-
year T-bonds, the training phase runs from January 1977
to December 1994 and the testing phase runs from January
1995 to May 1999. The interest rates data is presented in
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Table 4
Period and descriptive statistics of groups for the training phase, January 1961–August 1991 in 1-year bills and January 1977–December 1994 in 30-year T-bonds

Group 1 Group 2 Group 3 Group 4

1-year T-bills
Periods January 61–November 65 December 65–February 73 March 73–May 78 June 78–August 91
Minimum 2.720 3.600 4.640 5.260
Maximum 4.230 7.610 8.880 14.700
Range 1.510 4.010 4.240 9.440
Mean 3.378 5.419 6.507 8.654
Variance 0.219 0.938 1.008 5.240
Standard deviation 0.468 0.969 1.004 2.289
Skewness 0.147 0.496 0.363 0.781
Kurtosis 21.544 20.361 20.575 20.135

30-year T-bonds
Group 1 Group 2

Periods January 77–February 86 March 86–December 94
Minimum 7.640 5.940
Maximum 14.680 9.610
Range 7.040 3.670
Mean 10.819 7.995
Variance 3.862 0.676
Standard deviation 1.965 0.822
Skewness 0.011 20.365
Kurtosis 21.062 20.262



Fig. 3. Fig. 3 shows that the movement of interest rates
fluctuates highly in both 1-year T-bills and 30-year T-bonds.

The study employs two neural network models. One
model, labeled Pure_NN, involves four input variables at
time t to generate a forecast fort 1 1: The input variables
are M2, CPI, ERIR and IPI. The second type, labeled
BPN_NN, is the two-step BPN model that consists of
three stages mentioned in Section 3. The first step is the
CPGD stage that forecasts the change-point group while
the next step is the OFNN stage that forecasts the output.
For validation, two learning models are also compared.

5. Empirical results

The Pettitt test is applied to the interest rates dataset. As
the interest dataset is about forty years long for 1-year T-

bills, it is considered that there exist two or more change
points. It is further assumed that there exists just one change
point because of the small size of data for 30-year T-bonds.
Table 4 shows these results for 1-year T-bills and 30-year
T-bonds.

For the case of 1-year T-bills, Table 4 also presents
descriptive statistics including the mean and the variance.
Group 1 is the stable interval that has small variance.
Groups 2 and 3 have more fluctuated intervals than Group
1 in terms of the variance. Group 4 fluctuates highly. The
values of skewness and kurtosis indicate that the four groups
have similar attributes in distribution. Fig. 4 depicts the
density plot for each group. By Fig. 4, Groups 2 and 4 are
considered to have similar distribution in terms of the shape.

In the case of 30-year T-bonds, Table 4 shows that Group
2 is the stable interval with small variance while Group 1
fluctuates heavily with a big range. Fig. 5 presents the
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Fig. 4. Density plot of four homogeneous groups for 1-year T-bills.



density plot for each group. Through Fig. 5, Groups 1 and 2
are recognized to have the distinctive distribution.

To highlight the performance of the models, the actual
values of interest rates and their predicted values are shown
in Fig. 6. For 1-year T-bills, the predicted values of the pure
BPN model (i.e. Pure_NN) move apart from the actual
values in some intervals. In the case of 30-year T-bonds,
the predictive values of the proposed model also come
closer to the actual values than those of the pure BPN
model for the most intervals.

Numerical values for the performance metrics by the
predictive model are given in Table 5. Fig. 7 presents histo-
grams of RMSE, MAE and MAPE for the forecast of each
learning model in the cases of 1-year T-bills and 30-year T-
bonds. According to RMSE, MAE and MAPE, the
outcomes indicate that the proposed neural network model
is superior to the pure BPN model for both of the interest
rates.

We use the pairwiset-test to examine whether the
differences exist in the predicted values of models according
to the absolute percentage error (APE). This metric is
chosen because it is commonly used (Carbone &
Armstrong, 1982) and is highly robust (Armstrong &
Collopy, 1992; Makridakis, 1993). As the forecasts are

not statistically independent and not always normally
distributed, we compare the APEs of forecast using the pair-
wise t-test. Where sample sizes are reasonably large, this
test is robust to the distribution of the data, to nonhomo-
geneity of variances, and to statistical dependence (Iman &
Conover, 1983). Table 6 showst-values andp-values. The
neural network models using change-point detection
perform significantly better than the pure BPN model at a
1% significant level. Therefore, the proposed model is
demonstrated to obtain improved performance using the
change-point detection approach.

In summary, the neural network models using the change-
point detection turns out to have a high potential in interest
rates forecasting. This is attributable to the fact that it cate-
gorizes the interest rates data into homogeneous groups and
extracts regularities from each homogeneous group. There-
fore, the neural network models using change-point detec-
tion can cope with the noise or irregularities more efficiently
than the pure BPN model.

6. Concluding remarks

This study has suggested change-point detection to
support neural network models in interest rates forecasting.
The basic concept of this proposed model is to obtain signif-
icant intervals divided by the change points, to identify them
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Fig. 5. Density plot of two homogeneous groups for 30-year T-bonds.

Table 5
Performance results of rate forecasting based on the root mean squared
error (RMSE), the mean absolute error (MAE) and the mean absolute
percentage error (MAPE)

Model RMSE MAE MAPE (%)

1-year T-bills
Pure_NN 0.0973 0.2506 5.969
BPN_NN 0.0584 0.1745 3.746

30-year T-bonds
Pure_NN 2.5462 1.4976 24.828
BPN_NN 1.7553 1.2668 20.836

Table 6
Pairwiset-tests for the difference in residuals between the pure BPN model
and the proposed neural network model for 1-year T-bills and 30-year T-
bonds based on the absolute percentage error (APE) with the significance
level in parentheses (***significant at 1%)

Interest rates Test value

1-year T-bills 3.43 (0.000)***
30-year T-bonds 8.17 (0.000)***



as change-point groups, and to use them in interest rates
forecasting. We propose the integrated neural network
model that consists of three stages. In the first stage, we
conduct the nonparametric statistical test to construct the
homogeneous groups. In the second stage, we apply BPN
to forecast the change-point group. In the final stage, we also
apply BPN to forecast the output.

The neural network models using change-point detec-
tion perform significantly better than the pure BPN
model at a 1% significant level. These experimental
results imply the change-point detection has a high
potential to improve the performance. Our integrated
neural network model is demonstrated to be a useful
intelligent data analysis method with the concept of
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Fig. 6. (a) Actual vs predicted values due to the models for 1-year T-bills. (b) Actual vs predicted values due to the models for 30-year T-bonds.



change-point detection. In conclusion, we have shown that
the proposed model improves the predictability of interest
rates significantly.

The proposed model has the promising possibility of
improving the performance if further studies are to focus
on the optimal decision of the number of change point and

the various approaches in the construction of change-point
groups. In the OFNN stage, other intelligent techniques
besides BPN can be used to forecast the output. In addition,
the proposed model may be applied to other chaotic time
series data such as stock market prediction and exchange
rate prediction.
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Fig. 7. (a) Histogram of RMSE, MAE and MAPE resulting from forecasts of 1-year T-bills. (b) Histogram of RMSE, MAE and MAPE resulting from forecasts
of 30-year T-bonds.
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